Faculty of Science

Real Analysis II
Final Exam

Date: 16 /7 /1434
Time: 10.30-12.30

Name:
Co. No.

Answer the following:

1. State and prove Banach Fixed point Theorem. 6
2. Suppose f is continuous real function on a compact metric space S and $M=\sup _{p \in S} f(p), m=\inf _{p \in S} f(p)$. Prove that $M, m \in R_{f .} .4$
3. Let M be a nonempty subset of a metric space X. Prove that $x \in \bar{M}$ iff there is a sequence $\left(x_{n}\right)$ in M such that $x_{n} \rightarrow x .5$
4. Prove that f is Reimann integrable on $[a, b]$ iff for every $\epsilon>0$ there exists a partition P such that $U(P, f)-L(P, f)<\epsilon .5$
5. Suppose E is an open set in \mathbb{R}^{n}, f maps E into \mathbb{R}^{m}, f is differentiable at $x_{0} \in E, g$ maps an open set containing $f(E)$ into \mathbb{R}^{k}, g is differntiable at $f\left(x_{0}\right)$, then the mapping F of E into \mathbb{R}^{k} defined by $F(x)=g(f(x))$ is differntiable at x_{0} and $F\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f\left(x_{0}\right) .6$
6. Suppose that $X=\left(x_{n}\right)$ and $Y=\left(y_{n}\right)$ are positive real sequences. If $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}} \neq 0$, then prove that $\sum x_{n}$ is convergent iff $\sum y_{n}$ is convergent. 3
7. Suppose $f_{n} \rightarrow f$ uniformly on a set E in a metric space, let x be a limit point of E, and suppose that $\lim _{t \rightarrow x} f_{n}(t)=A_{n}, n=1,2,3, \ldots$, then $\left\{A_{n}\right\}$ converges and $\lim _{t \rightarrow x} f(t)=\lim _{n \rightarrow \infty} A_{n} .3$
a.
b. under what condition f is continuous? prove? 2
8. Let E be an open set in \mathbb{R}^{n}, suppose f is a C - mapping of an open set $E \subset \mathbb{R}^{n}$ into $\mathbb{R}^{n}, f($ a) is invertible for some $a \in E$ and $b=f(a)$ then \exists open sets U and V containing a and b respectively such that f is one to one on U and $f(U)=V .6$
