Faculty of Science Mathematics Departement Real Analysis II Final Exam Date: 16 /7 /1434 Time: 10.30 - 12.30

Name:	Co. No.	Serial number
***************************************	*****	***************

Answer the following:

1. State and prove Banach Fixed point Theorem. 6

2. Suppose *f* is continuous real function on a compact metric space *S* and $M = \sup_{p \in S} f(p), m = \inf_{p \in S} f(p)$. Prove that $M, m \in R_{f}$. **3**. Let *M* be a nonempty subset of a metric space *X*. Prove that $x \in \overline{M}$ iff there is a sequence (x_n) in *M* such that $x_n \to x$. 5

4. Prove that *f* is Reimann integrable on [*a*, *b*] iff for every $\epsilon > 0$ there exists a partition *P* such that $U(P, f) - L(P, f) < \epsilon$. 5

5. Suppose *E* is an open set in \mathbb{R}^n , *f* maps *E* into \mathbb{R}^m , *f* is differentiable at $x_0 \in E, g$ maps an open set containing f(E) into \mathbb{R}^k , *g* is differntiable at $f(x_0)$, then the mapping *F* of *E* into \mathbb{R}^k defined by F(x) = g(f(x)) is differntiable at x_0 and $F'(x_0) = g'(f(x_0))f'(x_0)$.

6. Suppose that $X = (x_n)$ and $Y = (y_n)$ are positive real sequences. If $\lim_{n \to \infty} \frac{x_n}{y_n} \neq 0$, then prove that $\sum x_n$ is convergent iff $\sum y_n$ is convergent. 3

7. Suppose $f_n \to f$ uniformly on a set *E* in a metric space, let *x* be a limit point of *E*, and suppose that $\lim_{t \to x} f_n(t) = A_n, n = 1, 2, 3, ..., \text{then } \{A_n\}$ converges and $\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$.

а.

b. under what condition *f* is continuous? prove? 2

8. Let *E* be an open set in \mathbb{R}^n , suppose *f* is a *C*[']-mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , f'(a) is invertible for some $a \in E$ and b = f(a) then \exists open sets *U* and *V* containing *a* and *b* respectively such that *f* is one to one on *U* and f(U) = V.